3.2.21 \(\int \frac {d+e x^2}{a+c x^4} \, dx\)

Optimal. Leaf size=247 \[ -\frac {\left (\sqrt {c} d-\sqrt {a} e\right ) \log \left (-\sqrt {2} \sqrt [4]{a} \sqrt [4]{c} x+\sqrt {a}+\sqrt {c} x^2\right )}{4 \sqrt {2} a^{3/4} c^{3/4}}+\frac {\left (\sqrt {c} d-\sqrt {a} e\right ) \log \left (\sqrt {2} \sqrt [4]{a} \sqrt [4]{c} x+\sqrt {a}+\sqrt {c} x^2\right )}{4 \sqrt {2} a^{3/4} c^{3/4}}-\frac {\left (\sqrt {a} e+\sqrt {c} d\right ) \tan ^{-1}\left (1-\frac {\sqrt {2} \sqrt [4]{c} x}{\sqrt [4]{a}}\right )}{2 \sqrt {2} a^{3/4} c^{3/4}}+\frac {\left (\sqrt {a} e+\sqrt {c} d\right ) \tan ^{-1}\left (\frac {\sqrt {2} \sqrt [4]{c} x}{\sqrt [4]{a}}+1\right )}{2 \sqrt {2} a^{3/4} c^{3/4}} \]

________________________________________________________________________________________

Rubi [A]  time = 0.15, antiderivative size = 247, normalized size of antiderivative = 1.00, number of steps used = 9, number of rules used = 6, integrand size = 17, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.353, Rules used = {1168, 1162, 617, 204, 1165, 628} \begin {gather*} -\frac {\left (\sqrt {c} d-\sqrt {a} e\right ) \log \left (-\sqrt {2} \sqrt [4]{a} \sqrt [4]{c} x+\sqrt {a}+\sqrt {c} x^2\right )}{4 \sqrt {2} a^{3/4} c^{3/4}}+\frac {\left (\sqrt {c} d-\sqrt {a} e\right ) \log \left (\sqrt {2} \sqrt [4]{a} \sqrt [4]{c} x+\sqrt {a}+\sqrt {c} x^2\right )}{4 \sqrt {2} a^{3/4} c^{3/4}}-\frac {\left (\sqrt {a} e+\sqrt {c} d\right ) \tan ^{-1}\left (1-\frac {\sqrt {2} \sqrt [4]{c} x}{\sqrt [4]{a}}\right )}{2 \sqrt {2} a^{3/4} c^{3/4}}+\frac {\left (\sqrt {a} e+\sqrt {c} d\right ) \tan ^{-1}\left (\frac {\sqrt {2} \sqrt [4]{c} x}{\sqrt [4]{a}}+1\right )}{2 \sqrt {2} a^{3/4} c^{3/4}} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[(d + e*x^2)/(a + c*x^4),x]

[Out]

-((Sqrt[c]*d + Sqrt[a]*e)*ArcTan[1 - (Sqrt[2]*c^(1/4)*x)/a^(1/4)])/(2*Sqrt[2]*a^(3/4)*c^(3/4)) + ((Sqrt[c]*d +
 Sqrt[a]*e)*ArcTan[1 + (Sqrt[2]*c^(1/4)*x)/a^(1/4)])/(2*Sqrt[2]*a^(3/4)*c^(3/4)) - ((Sqrt[c]*d - Sqrt[a]*e)*Lo
g[Sqrt[a] - Sqrt[2]*a^(1/4)*c^(1/4)*x + Sqrt[c]*x^2])/(4*Sqrt[2]*a^(3/4)*c^(3/4)) + ((Sqrt[c]*d - Sqrt[a]*e)*L
og[Sqrt[a] + Sqrt[2]*a^(1/4)*c^(1/4)*x + Sqrt[c]*x^2])/(4*Sqrt[2]*a^(3/4)*c^(3/4))

Rule 204

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> -Simp[ArcTan[(Rt[-b, 2]*x)/Rt[-a, 2]]/(Rt[-a, 2]*Rt[-b, 2]), x] /
; FreeQ[{a, b}, x] && PosQ[a/b] && (LtQ[a, 0] || LtQ[b, 0])

Rule 617

Int[((a_) + (b_.)*(x_) + (c_.)*(x_)^2)^(-1), x_Symbol] :> With[{q = 1 - 4*Simplify[(a*c)/b^2]}, Dist[-2/b, Sub
st[Int[1/(q - x^2), x], x, 1 + (2*c*x)/b], x] /; RationalQ[q] && (EqQ[q^2, 1] ||  !RationalQ[b^2 - 4*a*c])] /;
 FreeQ[{a, b, c}, x] && NeQ[b^2 - 4*a*c, 0]

Rule 628

Int[((d_) + (e_.)*(x_))/((a_.) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> Simp[(d*Log[RemoveContent[a + b*x +
c*x^2, x]])/b, x] /; FreeQ[{a, b, c, d, e}, x] && EqQ[2*c*d - b*e, 0]

Rule 1162

Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[(2*d)/e, 2]}, Dist[e/(2*c), Int[1/S
imp[d/e + q*x + x^2, x], x], x] + Dist[e/(2*c), Int[1/Simp[d/e - q*x + x^2, x], x], x]] /; FreeQ[{a, c, d, e},
 x] && EqQ[c*d^2 - a*e^2, 0] && PosQ[d*e]

Rule 1165

Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[(-2*d)/e, 2]}, Dist[e/(2*c*q), Int[
(q - 2*x)/Simp[d/e + q*x - x^2, x], x], x] + Dist[e/(2*c*q), Int[(q + 2*x)/Simp[d/e - q*x - x^2, x], x], x]] /
; FreeQ[{a, c, d, e}, x] && EqQ[c*d^2 - a*e^2, 0] && NegQ[d*e]

Rule 1168

Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[a*c, 2]}, Dist[(d*q + a*e)/(2*a*c),
 Int[(q + c*x^2)/(a + c*x^4), x], x] + Dist[(d*q - a*e)/(2*a*c), Int[(q - c*x^2)/(a + c*x^4), x], x]] /; FreeQ
[{a, c, d, e}, x] && NeQ[c*d^2 + a*e^2, 0] && NeQ[c*d^2 - a*e^2, 0] && NegQ[-(a*c)]

Rubi steps

\begin {align*} \int \frac {d+e x^2}{a+c x^4} \, dx &=\frac {\left (\frac {\sqrt {c} d}{\sqrt {a}}-e\right ) \int \frac {\sqrt {a} \sqrt {c}-c x^2}{a+c x^4} \, dx}{2 c}+\frac {\left (\frac {\sqrt {c} d}{\sqrt {a}}+e\right ) \int \frac {\sqrt {a} \sqrt {c}+c x^2}{a+c x^4} \, dx}{2 c}\\ &=\frac {\left (\frac {\sqrt {c} d}{\sqrt {a}}+e\right ) \int \frac {1}{\frac {\sqrt {a}}{\sqrt {c}}-\frac {\sqrt {2} \sqrt [4]{a} x}{\sqrt [4]{c}}+x^2} \, dx}{4 c}+\frac {\left (\frac {\sqrt {c} d}{\sqrt {a}}+e\right ) \int \frac {1}{\frac {\sqrt {a}}{\sqrt {c}}+\frac {\sqrt {2} \sqrt [4]{a} x}{\sqrt [4]{c}}+x^2} \, dx}{4 c}-\frac {\left (\sqrt {c} d-\sqrt {a} e\right ) \int \frac {\frac {\sqrt {2} \sqrt [4]{a}}{\sqrt [4]{c}}+2 x}{-\frac {\sqrt {a}}{\sqrt {c}}-\frac {\sqrt {2} \sqrt [4]{a} x}{\sqrt [4]{c}}-x^2} \, dx}{4 \sqrt {2} a^{3/4} c^{3/4}}-\frac {\left (\sqrt {c} d-\sqrt {a} e\right ) \int \frac {\frac {\sqrt {2} \sqrt [4]{a}}{\sqrt [4]{c}}-2 x}{-\frac {\sqrt {a}}{\sqrt {c}}+\frac {\sqrt {2} \sqrt [4]{a} x}{\sqrt [4]{c}}-x^2} \, dx}{4 \sqrt {2} a^{3/4} c^{3/4}}\\ &=-\frac {\left (\sqrt {c} d-\sqrt {a} e\right ) \log \left (\sqrt {a}-\sqrt {2} \sqrt [4]{a} \sqrt [4]{c} x+\sqrt {c} x^2\right )}{4 \sqrt {2} a^{3/4} c^{3/4}}+\frac {\left (\sqrt {c} d-\sqrt {a} e\right ) \log \left (\sqrt {a}+\sqrt {2} \sqrt [4]{a} \sqrt [4]{c} x+\sqrt {c} x^2\right )}{4 \sqrt {2} a^{3/4} c^{3/4}}+\frac {\left (\sqrt {c} d+\sqrt {a} e\right ) \operatorname {Subst}\left (\int \frac {1}{-1-x^2} \, dx,x,1-\frac {\sqrt {2} \sqrt [4]{c} x}{\sqrt [4]{a}}\right )}{2 \sqrt {2} a^{3/4} c^{3/4}}-\frac {\left (\sqrt {c} d+\sqrt {a} e\right ) \operatorname {Subst}\left (\int \frac {1}{-1-x^2} \, dx,x,1+\frac {\sqrt {2} \sqrt [4]{c} x}{\sqrt [4]{a}}\right )}{2 \sqrt {2} a^{3/4} c^{3/4}}\\ &=-\frac {\left (\sqrt {c} d+\sqrt {a} e\right ) \tan ^{-1}\left (1-\frac {\sqrt {2} \sqrt [4]{c} x}{\sqrt [4]{a}}\right )}{2 \sqrt {2} a^{3/4} c^{3/4}}+\frac {\left (\sqrt {c} d+\sqrt {a} e\right ) \tan ^{-1}\left (1+\frac {\sqrt {2} \sqrt [4]{c} x}{\sqrt [4]{a}}\right )}{2 \sqrt {2} a^{3/4} c^{3/4}}-\frac {\left (\sqrt {c} d-\sqrt {a} e\right ) \log \left (\sqrt {a}-\sqrt {2} \sqrt [4]{a} \sqrt [4]{c} x+\sqrt {c} x^2\right )}{4 \sqrt {2} a^{3/4} c^{3/4}}+\frac {\left (\sqrt {c} d-\sqrt {a} e\right ) \log \left (\sqrt {a}+\sqrt {2} \sqrt [4]{a} \sqrt [4]{c} x+\sqrt {c} x^2\right )}{4 \sqrt {2} a^{3/4} c^{3/4}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.05, size = 183, normalized size = 0.74 \begin {gather*} \frac {-\left (\sqrt {c} d-\sqrt {a} e\right ) \left (\log \left (-\sqrt {2} \sqrt [4]{a} \sqrt [4]{c} x+\sqrt {a}+\sqrt {c} x^2\right )-\log \left (\sqrt {2} \sqrt [4]{a} \sqrt [4]{c} x+\sqrt {a}+\sqrt {c} x^2\right )\right )-2 \left (\sqrt {a} e+\sqrt {c} d\right ) \tan ^{-1}\left (1-\frac {\sqrt {2} \sqrt [4]{c} x}{\sqrt [4]{a}}\right )+2 \left (\sqrt {a} e+\sqrt {c} d\right ) \tan ^{-1}\left (\frac {\sqrt {2} \sqrt [4]{c} x}{\sqrt [4]{a}}+1\right )}{4 \sqrt {2} a^{3/4} c^{3/4}} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[(d + e*x^2)/(a + c*x^4),x]

[Out]

(-2*(Sqrt[c]*d + Sqrt[a]*e)*ArcTan[1 - (Sqrt[2]*c^(1/4)*x)/a^(1/4)] + 2*(Sqrt[c]*d + Sqrt[a]*e)*ArcTan[1 + (Sq
rt[2]*c^(1/4)*x)/a^(1/4)] - (Sqrt[c]*d - Sqrt[a]*e)*(Log[Sqrt[a] - Sqrt[2]*a^(1/4)*c^(1/4)*x + Sqrt[c]*x^2] -
Log[Sqrt[a] + Sqrt[2]*a^(1/4)*c^(1/4)*x + Sqrt[c]*x^2]))/(4*Sqrt[2]*a^(3/4)*c^(3/4))

________________________________________________________________________________________

IntegrateAlgebraic [F]  time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {d+e x^2}{a+c x^4} \, dx \end {gather*}

Verification is not applicable to the result.

[In]

IntegrateAlgebraic[(d + e*x^2)/(a + c*x^4),x]

[Out]

IntegrateAlgebraic[(d + e*x^2)/(a + c*x^4), x]

________________________________________________________________________________________

fricas [B]  time = 0.98, size = 767, normalized size = 3.11 \begin {gather*} -\frac {1}{4} \, \sqrt {-\frac {a c \sqrt {-\frac {c^{2} d^{4} - 2 \, a c d^{2} e^{2} + a^{2} e^{4}}{a^{3} c^{3}}} + 2 \, d e}{a c}} \log \left (-{\left (c^{2} d^{4} - a^{2} e^{4}\right )} x + {\left (a^{3} c^{2} e \sqrt {-\frac {c^{2} d^{4} - 2 \, a c d^{2} e^{2} + a^{2} e^{4}}{a^{3} c^{3}}} + a c^{2} d^{3} - a^{2} c d e^{2}\right )} \sqrt {-\frac {a c \sqrt {-\frac {c^{2} d^{4} - 2 \, a c d^{2} e^{2} + a^{2} e^{4}}{a^{3} c^{3}}} + 2 \, d e}{a c}}\right ) + \frac {1}{4} \, \sqrt {-\frac {a c \sqrt {-\frac {c^{2} d^{4} - 2 \, a c d^{2} e^{2} + a^{2} e^{4}}{a^{3} c^{3}}} + 2 \, d e}{a c}} \log \left (-{\left (c^{2} d^{4} - a^{2} e^{4}\right )} x - {\left (a^{3} c^{2} e \sqrt {-\frac {c^{2} d^{4} - 2 \, a c d^{2} e^{2} + a^{2} e^{4}}{a^{3} c^{3}}} + a c^{2} d^{3} - a^{2} c d e^{2}\right )} \sqrt {-\frac {a c \sqrt {-\frac {c^{2} d^{4} - 2 \, a c d^{2} e^{2} + a^{2} e^{4}}{a^{3} c^{3}}} + 2 \, d e}{a c}}\right ) + \frac {1}{4} \, \sqrt {\frac {a c \sqrt {-\frac {c^{2} d^{4} - 2 \, a c d^{2} e^{2} + a^{2} e^{4}}{a^{3} c^{3}}} - 2 \, d e}{a c}} \log \left (-{\left (c^{2} d^{4} - a^{2} e^{4}\right )} x + {\left (a^{3} c^{2} e \sqrt {-\frac {c^{2} d^{4} - 2 \, a c d^{2} e^{2} + a^{2} e^{4}}{a^{3} c^{3}}} - a c^{2} d^{3} + a^{2} c d e^{2}\right )} \sqrt {\frac {a c \sqrt {-\frac {c^{2} d^{4} - 2 \, a c d^{2} e^{2} + a^{2} e^{4}}{a^{3} c^{3}}} - 2 \, d e}{a c}}\right ) - \frac {1}{4} \, \sqrt {\frac {a c \sqrt {-\frac {c^{2} d^{4} - 2 \, a c d^{2} e^{2} + a^{2} e^{4}}{a^{3} c^{3}}} - 2 \, d e}{a c}} \log \left (-{\left (c^{2} d^{4} - a^{2} e^{4}\right )} x - {\left (a^{3} c^{2} e \sqrt {-\frac {c^{2} d^{4} - 2 \, a c d^{2} e^{2} + a^{2} e^{4}}{a^{3} c^{3}}} - a c^{2} d^{3} + a^{2} c d e^{2}\right )} \sqrt {\frac {a c \sqrt {-\frac {c^{2} d^{4} - 2 \, a c d^{2} e^{2} + a^{2} e^{4}}{a^{3} c^{3}}} - 2 \, d e}{a c}}\right ) \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x^2+d)/(c*x^4+a),x, algorithm="fricas")

[Out]

-1/4*sqrt(-(a*c*sqrt(-(c^2*d^4 - 2*a*c*d^2*e^2 + a^2*e^4)/(a^3*c^3)) + 2*d*e)/(a*c))*log(-(c^2*d^4 - a^2*e^4)*
x + (a^3*c^2*e*sqrt(-(c^2*d^4 - 2*a*c*d^2*e^2 + a^2*e^4)/(a^3*c^3)) + a*c^2*d^3 - a^2*c*d*e^2)*sqrt(-(a*c*sqrt
(-(c^2*d^4 - 2*a*c*d^2*e^2 + a^2*e^4)/(a^3*c^3)) + 2*d*e)/(a*c))) + 1/4*sqrt(-(a*c*sqrt(-(c^2*d^4 - 2*a*c*d^2*
e^2 + a^2*e^4)/(a^3*c^3)) + 2*d*e)/(a*c))*log(-(c^2*d^4 - a^2*e^4)*x - (a^3*c^2*e*sqrt(-(c^2*d^4 - 2*a*c*d^2*e
^2 + a^2*e^4)/(a^3*c^3)) + a*c^2*d^3 - a^2*c*d*e^2)*sqrt(-(a*c*sqrt(-(c^2*d^4 - 2*a*c*d^2*e^2 + a^2*e^4)/(a^3*
c^3)) + 2*d*e)/(a*c))) + 1/4*sqrt((a*c*sqrt(-(c^2*d^4 - 2*a*c*d^2*e^2 + a^2*e^4)/(a^3*c^3)) - 2*d*e)/(a*c))*lo
g(-(c^2*d^4 - a^2*e^4)*x + (a^3*c^2*e*sqrt(-(c^2*d^4 - 2*a*c*d^2*e^2 + a^2*e^4)/(a^3*c^3)) - a*c^2*d^3 + a^2*c
*d*e^2)*sqrt((a*c*sqrt(-(c^2*d^4 - 2*a*c*d^2*e^2 + a^2*e^4)/(a^3*c^3)) - 2*d*e)/(a*c))) - 1/4*sqrt((a*c*sqrt(-
(c^2*d^4 - 2*a*c*d^2*e^2 + a^2*e^4)/(a^3*c^3)) - 2*d*e)/(a*c))*log(-(c^2*d^4 - a^2*e^4)*x - (a^3*c^2*e*sqrt(-(
c^2*d^4 - 2*a*c*d^2*e^2 + a^2*e^4)/(a^3*c^3)) - a*c^2*d^3 + a^2*c*d*e^2)*sqrt((a*c*sqrt(-(c^2*d^4 - 2*a*c*d^2*
e^2 + a^2*e^4)/(a^3*c^3)) - 2*d*e)/(a*c)))

________________________________________________________________________________________

giac [A]  time = 0.18, size = 245, normalized size = 0.99 \begin {gather*} \frac {\sqrt {2} {\left (\left (a c^{3}\right )^{\frac {1}{4}} c^{2} d + \left (a c^{3}\right )^{\frac {3}{4}} e\right )} \arctan \left (\frac {\sqrt {2} {\left (2 \, x + \sqrt {2} \left (\frac {a}{c}\right )^{\frac {1}{4}}\right )}}{2 \, \left (\frac {a}{c}\right )^{\frac {1}{4}}}\right )}{4 \, a c^{3}} + \frac {\sqrt {2} {\left (\left (a c^{3}\right )^{\frac {1}{4}} c^{2} d + \left (a c^{3}\right )^{\frac {3}{4}} e\right )} \arctan \left (\frac {\sqrt {2} {\left (2 \, x - \sqrt {2} \left (\frac {a}{c}\right )^{\frac {1}{4}}\right )}}{2 \, \left (\frac {a}{c}\right )^{\frac {1}{4}}}\right )}{4 \, a c^{3}} + \frac {\sqrt {2} {\left (\left (a c^{3}\right )^{\frac {1}{4}} c^{2} d - \left (a c^{3}\right )^{\frac {3}{4}} e\right )} \log \left (x^{2} + \sqrt {2} x \left (\frac {a}{c}\right )^{\frac {1}{4}} + \sqrt {\frac {a}{c}}\right )}{8 \, a c^{3}} - \frac {\sqrt {2} {\left (\left (a c^{3}\right )^{\frac {1}{4}} c^{2} d - \left (a c^{3}\right )^{\frac {3}{4}} e\right )} \log \left (x^{2} - \sqrt {2} x \left (\frac {a}{c}\right )^{\frac {1}{4}} + \sqrt {\frac {a}{c}}\right )}{8 \, a c^{3}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x^2+d)/(c*x^4+a),x, algorithm="giac")

[Out]

1/4*sqrt(2)*((a*c^3)^(1/4)*c^2*d + (a*c^3)^(3/4)*e)*arctan(1/2*sqrt(2)*(2*x + sqrt(2)*(a/c)^(1/4))/(a/c)^(1/4)
)/(a*c^3) + 1/4*sqrt(2)*((a*c^3)^(1/4)*c^2*d + (a*c^3)^(3/4)*e)*arctan(1/2*sqrt(2)*(2*x - sqrt(2)*(a/c)^(1/4))
/(a/c)^(1/4))/(a*c^3) + 1/8*sqrt(2)*((a*c^3)^(1/4)*c^2*d - (a*c^3)^(3/4)*e)*log(x^2 + sqrt(2)*x*(a/c)^(1/4) +
sqrt(a/c))/(a*c^3) - 1/8*sqrt(2)*((a*c^3)^(1/4)*c^2*d - (a*c^3)^(3/4)*e)*log(x^2 - sqrt(2)*x*(a/c)^(1/4) + sqr
t(a/c))/(a*c^3)

________________________________________________________________________________________

maple [A]  time = 0.00, size = 260, normalized size = 1.05 \begin {gather*} \frac {\left (\frac {a}{c}\right )^{\frac {1}{4}} \sqrt {2}\, d \arctan \left (\frac {\sqrt {2}\, x}{\left (\frac {a}{c}\right )^{\frac {1}{4}}}-1\right )}{4 a}+\frac {\left (\frac {a}{c}\right )^{\frac {1}{4}} \sqrt {2}\, d \arctan \left (\frac {\sqrt {2}\, x}{\left (\frac {a}{c}\right )^{\frac {1}{4}}}+1\right )}{4 a}+\frac {\left (\frac {a}{c}\right )^{\frac {1}{4}} \sqrt {2}\, d \ln \left (\frac {x^{2}+\left (\frac {a}{c}\right )^{\frac {1}{4}} \sqrt {2}\, x +\sqrt {\frac {a}{c}}}{x^{2}-\left (\frac {a}{c}\right )^{\frac {1}{4}} \sqrt {2}\, x +\sqrt {\frac {a}{c}}}\right )}{8 a}+\frac {\sqrt {2}\, e \arctan \left (\frac {\sqrt {2}\, x}{\left (\frac {a}{c}\right )^{\frac {1}{4}}}-1\right )}{4 \left (\frac {a}{c}\right )^{\frac {1}{4}} c}+\frac {\sqrt {2}\, e \arctan \left (\frac {\sqrt {2}\, x}{\left (\frac {a}{c}\right )^{\frac {1}{4}}}+1\right )}{4 \left (\frac {a}{c}\right )^{\frac {1}{4}} c}+\frac {\sqrt {2}\, e \ln \left (\frac {x^{2}-\left (\frac {a}{c}\right )^{\frac {1}{4}} \sqrt {2}\, x +\sqrt {\frac {a}{c}}}{x^{2}+\left (\frac {a}{c}\right )^{\frac {1}{4}} \sqrt {2}\, x +\sqrt {\frac {a}{c}}}\right )}{8 \left (\frac {a}{c}\right )^{\frac {1}{4}} c} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((e*x^2+d)/(c*x^4+a),x)

[Out]

1/8*d*(a/c)^(1/4)/a*2^(1/2)*ln((x^2+(a/c)^(1/4)*2^(1/2)*x+(a/c)^(1/2))/(x^2-(a/c)^(1/4)*2^(1/2)*x+(a/c)^(1/2))
)+1/4*d*(a/c)^(1/4)/a*2^(1/2)*arctan(2^(1/2)/(a/c)^(1/4)*x+1)+1/4*d*(a/c)^(1/4)/a*2^(1/2)*arctan(2^(1/2)/(a/c)
^(1/4)*x-1)+1/8*e/c/(a/c)^(1/4)*2^(1/2)*ln((x^2-(a/c)^(1/4)*2^(1/2)*x+(a/c)^(1/2))/(x^2+(a/c)^(1/4)*2^(1/2)*x+
(a/c)^(1/2)))+1/4*e/c/(a/c)^(1/4)*2^(1/2)*arctan(2^(1/2)/(a/c)^(1/4)*x+1)+1/4*e/c/(a/c)^(1/4)*2^(1/2)*arctan(2
^(1/2)/(a/c)^(1/4)*x-1)

________________________________________________________________________________________

maxima [A]  time = 2.53, size = 221, normalized size = 0.89 \begin {gather*} \frac {\sqrt {2} {\left (\sqrt {c} d + \sqrt {a} e\right )} \arctan \left (\frac {\sqrt {2} {\left (2 \, \sqrt {c} x + \sqrt {2} a^{\frac {1}{4}} c^{\frac {1}{4}}\right )}}{2 \, \sqrt {\sqrt {a} \sqrt {c}}}\right )}{4 \, \sqrt {a} \sqrt {\sqrt {a} \sqrt {c}} \sqrt {c}} + \frac {\sqrt {2} {\left (\sqrt {c} d + \sqrt {a} e\right )} \arctan \left (\frac {\sqrt {2} {\left (2 \, \sqrt {c} x - \sqrt {2} a^{\frac {1}{4}} c^{\frac {1}{4}}\right )}}{2 \, \sqrt {\sqrt {a} \sqrt {c}}}\right )}{4 \, \sqrt {a} \sqrt {\sqrt {a} \sqrt {c}} \sqrt {c}} + \frac {\sqrt {2} {\left (\sqrt {c} d - \sqrt {a} e\right )} \log \left (\sqrt {c} x^{2} + \sqrt {2} a^{\frac {1}{4}} c^{\frac {1}{4}} x + \sqrt {a}\right )}{8 \, a^{\frac {3}{4}} c^{\frac {3}{4}}} - \frac {\sqrt {2} {\left (\sqrt {c} d - \sqrt {a} e\right )} \log \left (\sqrt {c} x^{2} - \sqrt {2} a^{\frac {1}{4}} c^{\frac {1}{4}} x + \sqrt {a}\right )}{8 \, a^{\frac {3}{4}} c^{\frac {3}{4}}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x^2+d)/(c*x^4+a),x, algorithm="maxima")

[Out]

1/4*sqrt(2)*(sqrt(c)*d + sqrt(a)*e)*arctan(1/2*sqrt(2)*(2*sqrt(c)*x + sqrt(2)*a^(1/4)*c^(1/4))/sqrt(sqrt(a)*sq
rt(c)))/(sqrt(a)*sqrt(sqrt(a)*sqrt(c))*sqrt(c)) + 1/4*sqrt(2)*(sqrt(c)*d + sqrt(a)*e)*arctan(1/2*sqrt(2)*(2*sq
rt(c)*x - sqrt(2)*a^(1/4)*c^(1/4))/sqrt(sqrt(a)*sqrt(c)))/(sqrt(a)*sqrt(sqrt(a)*sqrt(c))*sqrt(c)) + 1/8*sqrt(2
)*(sqrt(c)*d - sqrt(a)*e)*log(sqrt(c)*x^2 + sqrt(2)*a^(1/4)*c^(1/4)*x + sqrt(a))/(a^(3/4)*c^(3/4)) - 1/8*sqrt(
2)*(sqrt(c)*d - sqrt(a)*e)*log(sqrt(c)*x^2 - sqrt(2)*a^(1/4)*c^(1/4)*x + sqrt(a))/(a^(3/4)*c^(3/4))

________________________________________________________________________________________

mupad [B]  time = 4.68, size = 599, normalized size = 2.43 \begin {gather*} -2\,\mathrm {atanh}\left (\frac {8\,c^3\,d^2\,x\,\sqrt {\frac {e^2\,\sqrt {-a^3\,c^3}}{16\,a^2\,c^3}-\frac {d^2\,\sqrt {-a^3\,c^3}}{16\,a^3\,c^2}-\frac {d\,e}{8\,a\,c}}}{2\,c^2\,d^2\,e-2\,a\,c\,e^3+\frac {2\,c\,d^3\,\sqrt {-a^3\,c^3}}{a^2}-\frac {2\,d\,e^2\,\sqrt {-a^3\,c^3}}{a}}-\frac {8\,a\,c^2\,e^2\,x\,\sqrt {\frac {e^2\,\sqrt {-a^3\,c^3}}{16\,a^2\,c^3}-\frac {d^2\,\sqrt {-a^3\,c^3}}{16\,a^3\,c^2}-\frac {d\,e}{8\,a\,c}}}{2\,c^2\,d^2\,e-2\,a\,c\,e^3+\frac {2\,c\,d^3\,\sqrt {-a^3\,c^3}}{a^2}-\frac {2\,d\,e^2\,\sqrt {-a^3\,c^3}}{a}}\right )\,\sqrt {-\frac {c\,d^2\,\sqrt {-a^3\,c^3}-a\,e^2\,\sqrt {-a^3\,c^3}+2\,a^2\,c^2\,d\,e}{16\,a^3\,c^3}}-2\,\mathrm {atanh}\left (\frac {8\,c^3\,d^2\,x\,\sqrt {\frac {d^2\,\sqrt {-a^3\,c^3}}{16\,a^3\,c^2}-\frac {d\,e}{8\,a\,c}-\frac {e^2\,\sqrt {-a^3\,c^3}}{16\,a^2\,c^3}}}{2\,c^2\,d^2\,e-2\,a\,c\,e^3-\frac {2\,c\,d^3\,\sqrt {-a^3\,c^3}}{a^2}+\frac {2\,d\,e^2\,\sqrt {-a^3\,c^3}}{a}}-\frac {8\,a\,c^2\,e^2\,x\,\sqrt {\frac {d^2\,\sqrt {-a^3\,c^3}}{16\,a^3\,c^2}-\frac {d\,e}{8\,a\,c}-\frac {e^2\,\sqrt {-a^3\,c^3}}{16\,a^2\,c^3}}}{2\,c^2\,d^2\,e-2\,a\,c\,e^3-\frac {2\,c\,d^3\,\sqrt {-a^3\,c^3}}{a^2}+\frac {2\,d\,e^2\,\sqrt {-a^3\,c^3}}{a}}\right )\,\sqrt {-\frac {a\,e^2\,\sqrt {-a^3\,c^3}-c\,d^2\,\sqrt {-a^3\,c^3}+2\,a^2\,c^2\,d\,e}{16\,a^3\,c^3}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((d + e*x^2)/(a + c*x^4),x)

[Out]

- 2*atanh((8*c^3*d^2*x*((e^2*(-a^3*c^3)^(1/2))/(16*a^2*c^3) - (d^2*(-a^3*c^3)^(1/2))/(16*a^3*c^2) - (d*e)/(8*a
*c))^(1/2))/(2*c^2*d^2*e - 2*a*c*e^3 + (2*c*d^3*(-a^3*c^3)^(1/2))/a^2 - (2*d*e^2*(-a^3*c^3)^(1/2))/a) - (8*a*c
^2*e^2*x*((e^2*(-a^3*c^3)^(1/2))/(16*a^2*c^3) - (d^2*(-a^3*c^3)^(1/2))/(16*a^3*c^2) - (d*e)/(8*a*c))^(1/2))/(2
*c^2*d^2*e - 2*a*c*e^3 + (2*c*d^3*(-a^3*c^3)^(1/2))/a^2 - (2*d*e^2*(-a^3*c^3)^(1/2))/a))*(-(c*d^2*(-a^3*c^3)^(
1/2) - a*e^2*(-a^3*c^3)^(1/2) + 2*a^2*c^2*d*e)/(16*a^3*c^3))^(1/2) - 2*atanh((8*c^3*d^2*x*((d^2*(-a^3*c^3)^(1/
2))/(16*a^3*c^2) - (d*e)/(8*a*c) - (e^2*(-a^3*c^3)^(1/2))/(16*a^2*c^3))^(1/2))/(2*c^2*d^2*e - 2*a*c*e^3 - (2*c
*d^3*(-a^3*c^3)^(1/2))/a^2 + (2*d*e^2*(-a^3*c^3)^(1/2))/a) - (8*a*c^2*e^2*x*((d^2*(-a^3*c^3)^(1/2))/(16*a^3*c^
2) - (d*e)/(8*a*c) - (e^2*(-a^3*c^3)^(1/2))/(16*a^2*c^3))^(1/2))/(2*c^2*d^2*e - 2*a*c*e^3 - (2*c*d^3*(-a^3*c^3
)^(1/2))/a^2 + (2*d*e^2*(-a^3*c^3)^(1/2))/a))*(-(a*e^2*(-a^3*c^3)^(1/2) - c*d^2*(-a^3*c^3)^(1/2) + 2*a^2*c^2*d
*e)/(16*a^3*c^3))^(1/2)

________________________________________________________________________________________

sympy [A]  time = 0.68, size = 109, normalized size = 0.44 \begin {gather*} \operatorname {RootSum} {\left (256 t^{4} a^{3} c^{3} + 64 t^{2} a^{2} c^{2} d e + a^{2} e^{4} + 2 a c d^{2} e^{2} + c^{2} d^{4}, \left (t \mapsto t \log {\left (x + \frac {64 t^{3} a^{3} c^{2} e + 12 t a^{2} c d e^{2} - 4 t a c^{2} d^{3}}{a^{2} e^{4} - c^{2} d^{4}} \right )} \right )\right )} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x**2+d)/(c*x**4+a),x)

[Out]

RootSum(256*_t**4*a**3*c**3 + 64*_t**2*a**2*c**2*d*e + a**2*e**4 + 2*a*c*d**2*e**2 + c**2*d**4, Lambda(_t, _t*
log(x + (64*_t**3*a**3*c**2*e + 12*_t*a**2*c*d*e**2 - 4*_t*a*c**2*d**3)/(a**2*e**4 - c**2*d**4))))

________________________________________________________________________________________